博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
etcd raft library设计原理和使用
阅读量:5834 次
发布时间:2019-06-18

本文共 6811 字,大约阅读时间需要 22 分钟。

早在2013年11月份,在raft论文还只能在网上下载到草稿版时,我曾经写过一篇blog对其进行简要分析。4年过去了,各种raft协议的讲解铺天盖地,raft也确实得到了广泛的应用。其中最知名的应用莫过于etcd。etcd将raft协议本身实现为一个library,位于https://github.com/coreos/etcd/tree/master/raft,然后本身作为一个应用使用它。

本文不讲解raft协议核心内容,而是站在一个etcd raft library使用者的角度,讲解要用上这个library需要了解的东西。

这个library使用起来相对来说还是有点麻烦。官方有一个使用示例在 https://github.com/coreos/etcd/tree/master/contrib/raftexample。整体来说,这个库实现了raft协议核心的内容,比如append log的逻辑,选主逻辑,snapshot,成员变更等逻辑。需要明确的是:library没有实现消息的网络传输和接收,库只会把一些待发送的消息保存在内存中,用户自定义的网络传输层取出消息并发送出去,并且在网络接收端,需要调一个library的函数,用于将收到的消息传入library,后面会详细说明。同时,library定义了一个Storage接口,需要library的使用者自行实现。

Storage接口如下:

// Storage is an interface that may be implemented by the application// to retrieve log entries from storage. If any Storage method returns an error, the raft instance will// become inoperable and refuse to participate in elections; the// application is responsible for cleanup and recovery in this case.type Storage interface {    // InitialState returns the saved HardState and ConfState information.    InitialState() (pb.HardState, pb.ConfState, error)    // Entries returns a slice of log entries in the range [lo,hi).    // MaxSize limits the total size of the log entries returned, but    // Entries returns at least one entry if any.    Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)    // Term returns the term of entry i, which must be in the range    // [FirstIndex()-1, LastIndex()]. The term of the entry before    // FirstIndex is retained for matching purposes even though the    // rest of that entry may not be available.    Term(i uint64) (uint64, error)    // LastIndex returns the index of the last entry in the log.    LastIndex() (uint64, error)    // FirstIndex returns the index of the first log entry that is    // possibly available via Entries (older entries have been incorporated    // into the latest Snapshot; if storage only contains the dummy entry the    // first log entry is not available).    FirstIndex() (uint64, error)    // Snapshot returns the most recent snapshot.    // If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,    // so raft state machine could know that Storage needs some time to prepare    // snapshot and call Snapshot later.    Snapshot() (pb.Snapshot, error)}

这些接口在library中会被用到。熟悉raft协议的人不难理解。上面提到的官方示例https://github.com/coreos/etcd/tree/master/contrib/raftexample中使用了library自带的MemoryStorage,和etcd的wal和snap包做持久化,重启的时候从wal和snap中获取日志恢复MemoryStorage。

要提供这种IO/网络密集型的东西,提高吞吐最好的手段就是batch加批处理了。etcd raft library正是这么做的。

下面看一下为了做这事,etcd提供的核心抽象Ready结构体:

// Ready encapsulates the entries and messages that are ready to read,// be saved to stable storage, committed or sent to other peers.// All fields in Ready are read-only.type Ready struct {    // The current volatile state of a Node.    // SoftState will be nil if there is no update.    // It is not required to consume or store SoftState.    *SoftState    // The current state of a Node to be saved to stable storage BEFORE    // Messages are sent.    // HardState will be equal to empty state if there is no update.    pb.HardState    // ReadStates can be used for node to serve linearizable read requests locally    // when its applied index is greater than the index in ReadState.    // Note that the readState will be returned when raft receives msgReadIndex.    // The returned is only valid for the request that requested to read.    ReadStates []ReadState    // Entries specifies entries to be saved to stable storage BEFORE    // Messages are sent.    Entries []pb.Entry    // Snapshot specifies the snapshot to be saved to stable storage.    Snapshot pb.Snapshot    // CommittedEntries specifies entries to be committed to a    // store/state-machine. These have previously been committed to stable    // store.    CommittedEntries []pb.Entry    // Messages specifies outbound messages to be sent AFTER Entries are    // committed to stable storage.    // If it contains a MsgSnap message, the application MUST report back to raft    // when the snapshot has been received or has failed by calling ReportSnapshot.    Messages []pb.Message    // MustSync indicates whether the HardState and Entries must be synchronously    // written to disk or if an asynchronous write is permissible.    MustSync bool}

可以说,这个Ready结构体封装了一批更新,这些更新包括:

  • pb.HardState: 包含当前节点见过的最大的term,以及在这个term给谁投过票,已经当前节点知道的commit index

  • Messages: 需要广播给所有peers的消息

  • CommittedEntries:已经commit了,还没有apply到状态机的日志

  • Snapshot:需要持久化的快照

库的使用者从node结构体提供的一个ready channel中不断的pop出一个个的Ready进行处理,库使用者通过如下方法拿到Ready channel:

func (n *node) Ready() <-chan Ready { return n.readyc }

应用需要对Ready的处理包括:

  1. 将HardState, Entries, Snapshot持久化到storage。

  2. 将Messages(上文提到的msgs)非阻塞的广播给其他peers

  3. 将CommittedEntries(已经commit还没有apply)应用到状态机。

  4. 如果发现CommittedEntries中有成员变更类型的entry,调用node的ApplyConfChange()方法让node知道(这里和raft论文不一样,论文中只要节点收到了成员变更日志就应用)

  5. 调用Node.Advance()告诉raft node,这批状态更新处理完了,状态已经演进了,可以给我下一批Ready让我处理。

应用通过raft.StartNode()来启动raft中的一个副本,函数内部通过启动一个goroutine运行

func (n *node) run(r *raft)

来启动服务。

应用通过调用

func (n *node) Propose(ctx context.Context, data []byte) error

来Propose一个请求给raft,被raft开始处理后返回。

增删节点通过调用

func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error

node结构体包含几个重要的channel:

// node is the canonical implementation of the Node interfacetype node struct {    propc      chan pb.Message    recvc      chan pb.Message    confc      chan pb.ConfChange    confstatec chan pb.ConfState    readyc     chan Ready    advancec   chan struct{}    tickc      chan struct{}    done       chan struct{}    stop       chan struct{}    status     chan chan Status    logger Logger}
  • propc: propc是一个没有buffer的channel,应用通过Propose接口写入的请求被封装成Message被push到propc中,node的run方法从propc中pop出Message,append自己的raft log中,并且将Message放入mailbox中(raft结构体中的msgs []pb.Message),这个msgs会被封装在Ready中,被应用从readyc中取出来,然后通过应用自定义的transport发送出去。

  • recvc: 应用自定义的transport在收到Message后需要调用

    func (n *node) Step(ctx context.Context, m pb.Message) error

    来把Message放入recvc中,经过一些处理后,同样,会把需要发送的Message放入到对应peers的mailbox中。后续通过自定义transport发送出去。

  • readyc/advancec: readyc和advancec都是没有buffer的channel,node.run()内部把相关的一些状态更新打包成Ready结构体(其中一种状态就是上面提到的msgs)放入readyc中。应用从readyc中pop出Ready中,对相应的状态进行处理,处理完成后,调用

    rc.node.Advance()

    往advancec中push一个空结构体告诉raft,已经对这批Ready包含的状态进行了相应的处理,node.run()内部从advancec中得到通知后,对内部一些状态进行处理,比如把已经持久化到storage中的entries从内存(对应type unstable struct)中删除等。

  • tickc:应用定期往tickc中push空结构体,node.run()会调用tick()函数,对于leader来说,tick()会给其他peers发心跳,对于follower来说,会检查是否需要发起选主操作。

  • confc/confstatec:应用从Ready中拿出CommittedEntries,检查其如果含有成员变更类型的日志,则需要调用

    func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState

    这个函数会push ConfChange到confc中,confc同样是个无buffer的channel,node.run()内部会从confc中拿出ConfChange,然后进行真正的增减peers操作,之后将最新的成员组push到confstatec中,而ApplyConfChange函数从confstatec pop出最新的成员组返回给应用。

本文转自 sshpp 51CTO博客,原文链接:http://blog.51cto.com/12902932/1949423,如需转载请自行联系原作者
你可能感兴趣的文章
分类器性能度量
查看>>
windows 环境下切换 python2 与 pythone3 以及常用命令
查看>>
docker 基础
查看>>
解决灾难恢复后域共享目录SYSVOL与NELOGON共享丢失
查看>>
eclipse集成weblogic开发环境的搭建
查看>>
写一个bat文件,删除文件名符合特定规则,且更改日期在某
查看>>
我的友情链接
查看>>
写Use Case的一种方式,从oracle的tutorial抄来的
查看>>
【C#】protected 变量类型
查看>>
Ubuntu解压
查看>>
爬虫_房多多(设置随机数反爬)
查看>>
藏地密码
查看>>
爬虫去重(只是讲了去重的策略,没有具体讲实现过程,反正就是云里雾里)...
查看>>
react中将px转化为rem或者vw
查看>>
8816
查看>>
avcodec_open2()分析
查看>>
何如获取单选框中某一个选中的值
查看>>
paip.输入法编程----删除双字词简拼
查看>>
tcp状态
查看>>
QQ悬浮返回顶部
查看>>